
The trx-control System Architecture

At the core of trx-control is trxd(8), a highly efficient dae-

mon running on Linux (or on Windows using WSL, Windows

Services for Linux). trxd(8) is written in the C language and

uses a modern multi-threaded approach.

On the other hand, transceiver drivers, drivers for other

devices and extensions are written in the Lua scripting

language, making it easy to change the behaviour of trxd(8)

or add new functionality even for those users who are not

proficient in the C language. Furthermore, adding new

drivers does not need a recompilation of the software

Each communication channel (TCP/IP socket, WebSocket) is

handled by its own listener thread that will create a service

thread for each client that connects to trxd(8).

Each client is served by its own service thread and access to

all resources, be it transceivers, devices, or, something else,

is carefully synchronised to ensure not two clients access

the same resource at the same time.

Transceivers can automatically be queried at a specified

interval for status updates (polling) or if they support

automatic status updates by themselves that mechanism

can be used without the need for a polling thread,

Communication is not only be initiated by a client, but also

by trxd(8), e.g. to send automatic status updates.

Why trxd(8)?

Linux comeswith a comprehensive set ofmanual pages that

are organized in sections that are traditionally numbered.

Section 8 of the manual is the “SystemManager’s Manual“.

It is not uncommon to refer to commands indicating in

brackets the manual section where it is documented.

So trxd(8) is documented in section 8 of the manual, see

$ man trxd.

One Solution to Automate Your Shack

trx-control is a modular and highly extensible software sys-

tem covering the following use cases:

• Controlling your transceivers.

• Controlling other hardware, e.g. GPIO devices.

• Connecting to databases, e.g. PostgreSQL.

• Communicating between different clients.

• Querying third party databases or systems like

QRZ.com, DXCluster etc.

Advantages Of An Open Solution

trx-controlhas a completely opendesign and is open source

under the very liberal MIT license. Thanks to its modular

design, it is easily extensible, your imagination is the only

limit. trxd(8), the daemon that runs at the core of the system

is highly efficient and by its multi-threaded architecture it

makes use of all available CPU cores.

Integrating trx-control into existing client software, e.g.

logbooks or contesting software is straight forward thanks

to a well documented JSON based client/server protocol

that can be used over plain TCP/IP sockets or WebSockets.

trx-control website

micro systems https://trx-control.msys.ch

Radio Communications info@hb9ssb.ch

Landstrasse 66 #trx-control:matrix.org

CH-5073 Gipf-Oberfrick 062 871 45 65

A modern software system for Linux to control transceivers

and other devices over the network.

trx-control is an extensible software system to control

amateur radio transceivers and related hardware like relays,

GPIO-pins and to integrate clients with third-party software

using application specific extensions. It comes with com-

prehensive and complete documentation.

Project Goals

• Provide a one-stop solution to automate your shack.

• Make it easy to add support for new transceivers or other

devices.

• Make the system extensible by means of Lua, an easy to

learn and easy to use scripting language.

• Use a well defined protocol based on the exchange of

JSON-formatted data to communicate between trx-control

and client software.

• Use amodern multithreaded and asynchronous approach

at the core of the software.

trx-control is made in Switzerland.

https://trx-control.msys.ch

trx-control for End Users

Installation

trx-control can be installed and built from source code or in-

stalled using prebuilt ready-to-go binaries.

Configuration

Configuration is as easy as editing the /etc/trxd.yaml text file

in the human readable YAML format.

Usage

After editing the /etc/trxd.yaml config file, fire up trxd(8)

using systemctl:

systemctl start trxd

Also, check the trxd(8), trxctl(1), and, trx-control(7) man

pages.

The trxctl(1) command

To test your setup or operate your transceiver, use the trx-

ctl(1) command which connects to trxd(8) and allows you to

send commands or receive and display automatic status up-

dates.

Spread the Word

If you like trx-control then please spread the word. Let oth-

ers knowabout the project, present it in your local hamradio

society etc. Ask us for ready made presentations and flyers.

User guide

https://trx-control.msys.ch/trx-control-user-guide.html

trx-control for System Integrators

Connecting to trxd(8)

Your software connects to trxd(8) either using a plain TCP/IP

socket or a WebSocket. The connection is bi-directional.

The Client/Server Protocol

Theclient/serverprotocol is basedon theexchangeof JSON-

formattedmessages. In thecaseof aplansocket connection,

the NDJSON format must be used.

The protocol is extensible, as is the software itself. This

means that new extensions can define their own requests

and replies.

Destinations

Everydevice, extensionetc. is adestination. Youcanaddress

requests to a specific destination and you can query a list of

destinations. The names of destinations are defined in the

/etc/trxd.yaml config file.

Automatic Status Updates

If you enable automatic status updates or listen to events of

an extension, be ready to receive corresponding JSON pack-

ages at any time.

Let Us Know

If you are adding support for trx-control to your software,

then let us know. We will add your project to the list of pro-

grams supporting trx-control .

Integration guide

https://trx-control.msys.ch/trx-control-integration-guide.html

trx-control for Developers

Overview

trx-control is highly extensible using the Lua programming

language which is easy to learn and easy to use, yet very

powerful and performant. Visit https://lua.org for de-

tails.

Device Drivers

Device drivers interface trxd(8) with real hardware. This is

where requests in the common JSON format are converted

tocommands for the targetdeviceanddevice specific replies

are again converted to a common format. E.g. frequencies

are always in hertz, regardless what a transceiver uses.

Extensions

Extensions add custom functionality to a trx-control and

make it available to clients. They define their own request

and replies and support automatic status updates.

Lua Modules

trx-control comes packed with Lua modules ready for use:

yaml, json, postgresql, curl, sqlite, linux, expat. More can

easily be added, even your own ones.

Getting Help

There is the Issue Tracker on GitHub at https://github.
com/hb9ssb/trx-control. You can also join the Matrix

room #trx-control:matrix.org.

Developer guide

https://trx-control.msys.ch/trx-control-developer-guide.html

https://trx-control.msys.ch/trx-control-user-guide.html
https://trx-control.msys.ch/trx-control-integration-guide.html
https://lua.org
https://github.com/hb9ssb/trx-control
https://github.com/hb9ssb/trx-control
https://trx-control.msys.ch/trx-control-developer-guide.html

